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Abstract-This paper presents a general numerical model to solve the inverse couple-stress problem that is 
formulated as a nonlinear programming problem with multi-constraints of inequality. By utilizing an aggregate 
function approach, multi-constraints are converted into a single smooth constraint, resulting in computing 
convenience. A newly developed discrete Cosserat finite element approach is employed in modeling the direct 
problem, and the Brayden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is combined with a technique of 
multiplier penalty functions in the process of solving the inverse problem. Numerical verification is given with 
the consideration of noisy data. 
 
1. INTRODUCTION 
Couple stress theory can be traced back to 1887 when Voigt assumed the existence of couple stress. In 1909, the 
Cosserat brothers first set up a framework of couple stress theory which has been further developed since then, 
[8,9,14,15]. The couple stress theory assumes that the interaction of the material on two sides of a surface 
element is equipollent to a force and a couple (couple stress). Accordingly, a group of variables including 
moments, curvatures, and characteristic length are introduced within a continuum framework, [2]. 

One important aspect of the application of couple stress theory was to describe the properties of 
microstructure of materials, such as materials with granular, fibrous and lattice structures, [14]. For some cases 
where the size effects have to be taken into account, [4], this theory was employed to explain the variation of 
hardening behavior, [11], and to soften local singularities, [5]. 

The study of this paper is motivated by the question that if a continuum couple stress model is adopted, how to 
determine its constitutive coefficients, including the so-called characteristic length ? l

Determining these coefficients is one of the key issues of inverse couple stress problems. However, to the best 
of the authors’ present knowledge it seems no reports exist directly related to this matter. Thus this paper 
proposes a nonlinear programming model with multi-constraints to solve an inverse couple-stress problem with 
unknown constitutive coefficients. A kind of newly developed discrete Cosserat finite element method (FEM), 
[20], is employed in the solution of direct problems. By exploiting a maximum entropy theory based aggregate 
function method, [12], multi-constraints can be converted into a single differentiable constraint without 
distinguishing active and inactive constraints in the iterative process. The optimization with a single constraint is 
realized using a technique of multiplier penalty functions. Satisfactory results are shown in the numerical 
verification, and the effects of noisy data on the results are taken into account. 
 
2. GOVERNING EQUATIONS FOR DIRECT COUPLE STRESS PROBLEMS 
For plane couple-stress problems in the absence of body forces and couples, the equilibrium equations are given 
by, [2], 
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where  refers to the stress vector,  are the Cauchy components 
of the stress vector, and and denote the moments. 
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The relationship of strain and displacement is described by, [2], 
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where represents the strain vector, designates the vector of 
displacement, and  is a microrotation about the z axis defined by 
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xyyx γ,ε,ε are the Cauchy components of the strain vector, and designate the curvatures corresponding to 
and , and they are specified by 
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The boundary conditions are specified by, [4], 

uu =            uΓ∈x  (7) 
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where is the component of Cauchy stress and is the component of couple stress. The vectorijσ jµ u contains the 
prescribed values of  on . Furthermore and are the prescribed vectors of traction and moment on 

, where denotes the unit outward normal to the boundary,
u uΓ

0
iT 0q

σΓ jn uΓ + σΓ = Γ  = ∂Ω ,  represents a vector 
of coordinates and the subscripts u and 

x
σ  of Γ  refer to  displacement and stress, respectively. 

 
3. IMPLEMENTATION OF FEM ON DIRECT COUPLE STRESS PROBLEMS  
Since the analytical solution is usually difficult to obtain, a number of numerical approaches have been 
developed for the solution of eqns (1)-(8), [1,16]. In this paper a kind of newly developed discrete Cosserat 
triangular finite element approach, [20], is employed to solve direct couple stress problems. 

Within a triangular finite element, as shown in the Figure 1, the vector  is interpolated by T
zθv,u, }{=u

332211 uNuNuNu ++=  (10)

332211 vNvNvNv ++=   (11)

qz aNθNθNθNθ +++= 332211  (12)

where ， , ,  ηξN −−=11 ξN =2 ηN =3 )(27 ηξ1ξηNq −−= ,  is a bubble function adopted for qN
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improving accuracy,  is an inner parameter which can be determined by imposing a )(2
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the centroid of an element, and ( ) are coordinates defined in Figure 2. ηξ,
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Figure 1. A triangular element. 
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Figure 2. A triangular element  
in the natural coordinate system.  

 

Equations (10)-(12) can further be written as  

eN du  ][=  (13) 

where designates a matrix of shape functions. ][N
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The stiffness matrix of an element can be expressed by  
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where F  represents the thickness of the material,  is a constant matrix related to the elastic modulus ][D E , 
Poisson’s ratio , and the characteristic length of the material, in addition ν l ][][ N B L= . 

For the plane stress problem 
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where 
)2(

22

ν1
ElGlβ
+

==  is called the curvature modulus, [2]. 

][D can further be divided into [ ] [ ] [ ] [ ]332211 HbHbHbD ++=  (17) 
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By utilizing virtual displacement principle and assembling all elements over the domain, a system of equations 
can be obtained, [20], having the form 

1
~ Fu  K =  (19) 

where [ ] [ ] [ ]( )∑∫∫ ++=
eΩ 332211 ][][ FdxdyBHbHbHbB TK  denotes the stiffness matrix of the system 

and u~ and  refer to general nodal vectors of displacement and force, respectively.  1F

 
4. INVERSE COUPLE-STRESS PROBLEM  

For the inverse problem given by eqn.(19), u~  is partially known. The unknowns to be determined are 
 or in the stiffness matrix }{ lν,E,=x }{ 321 b,b,b=b K on the left hand side of eqn.(19). 

x or can be evaluated by minimizing a functional defined by b

RRuuHuuH ** TT

2
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where denotes a vector of  known quasi-static displacements which is usually obtained by measurement; *u
u~ is given by eqn.(19), H is a transformation matrix mapping the relationship of location between u~ and *u . 

he c
  

T onstraints can be described by 

1) 

Equation (21) represents physical re
nu

of with respect to is given by  

  

mib =>  (2i ,...,2,1           0

quirements for the constitutive parameters. Without this constraint, 
merical oscillation, lower convergence rates, and even divergence may occur in the iterative process of 

unconstrained optimization, especially in the case which does not guarantee the convexity of the proposed 
problems, [19].  
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. IMPLEMENTATION OF AGGREGATE FUNCTION METHOD 

fferentiable constraint via a maximum 

exploited, [12,13]. 

5
Multi-constraints defined by eqn.(21) can be converted into a single di
entropy theory based on aggregate function method, [12,13], the trouble caused by distinguishing active and 
inactive constraints in the iterative process can therefore be avoided. Furthermore, some well developed 
algorithms, such as quasi-exact penalty function algorithm, multiplier penalty functions algorithm etc., can be 
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Consider a problem defined by 
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wh e er Y is a vector of variables,  and ( )Yf ( )Yig  Y . are sm h nonlinear functions of oot
The problem (P) can be converted into an equivalent problem with a single constraint  
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whe e single constraint is termed as ‘maximum’ constraint, having the form  

 (26) 
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non-differentiability of eqn.(26), , a ‘surrogate constraint’ or ‘aggregate function’ , was proposed by Li 
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Hence  represents an integral effect of all the constraints. The adoption of  can make 
com ore ef

roblem P2) ca
[7,17]. By means of multiplier penalty functions, [17], the problem (P2) can be 

tr

( )Ypg ( )Ypg
puting m ficient, [13]. 

When p  (P) has at least one ‘active’ constraint，the single inequality constraint of ( n be further 
written as an equality constraint, 

eated as an unconstrained optimization defined by 
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w  a penalty factor and is a Lagrange multiplier associ
is equal to the sum of all the Lagrange multipliers in the problem (P), [13]. 

e b

here c  is ated with the single constraint (27) and α  α  

In th iterative process, α  will e updated by 

( )k
p

kk gcαα Y⋅+=+1                                                               (31) 

In order to solve eqn.(30), a
The major steps of solving eqn.(30) via the BFGS algorithm can be referred to [19]. 

 
. NU
y considering eqns (20) and (21) as Problem (P), and using the techniques proposed in section 4, a number of 

 standard BFGS algorithm, [7], for unconstrained optimization is employed.  

6
B

MERICAL EXAMPLES AND REMARKS 
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Figure 3. A foursquare plate subjected to a tension. 

bjected to a tension 
numerical tests are carried out. 

Consider a square plate su Lyq /20=  as shown in Figure 3 where L =0.16. 
n will contai  m

parameters. Figu

 (32) 

where represents the known information of quasi-static displacements with noisy data, is a random 
 w d 

xed value of , 40 groups of results are obtained with 40  produced randomly.  

T
zθv,u, }{=  occurring under such loading conditio n the information related to all the aterial 

re 4 gives the description of the mesh configuration. In the homogeneous case, due to the 
symmetry of the problem, only a quarter of the plate is computed. In the non-homogeneous case, elements 1-16 
and 17-32 are assumed to have different material parameters, respectively.  

Noisy data is specified by, [18], 

u

e* uu ⋅⋅+= )( ξδ1  

*u  ξ  
variable hich follows a normal distribution with zero mean and unit standard deviation an δ  denotes a 
deviation.  

For each fi δ ξ
The confidence interval is evaluated by, [18],  
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  Figure 4. Finite element mesh. 
 
 
w x  represents  the mean of identified parameters, s is a standard deviation of the identified parameters, t 

and 2 give the results without noisy data for homogeneous and inhomogeneous cases, respectively. 
Ta

Table 1. Identification of constitutive parameters in the homogeneous case. 
Constitutive 

s
Number of 

denotes a t distribution with the degree of freedom (N-1), N is the capability of samples, and the confidence level 
is β−1 .  

s 1 Table
ble 3 represents the effect of initial guesses on the results. Table 4 exhibits the results with a confidence 

interval of 95% for noisy data.  
 

Initial Numerical Actual Number of 
parameters guesses results values ample points iterations 

E  1. 6 1.0 0 5 0000E+0 000E+05 1. 000E+0
v  4.0000E-01 3.0000E-01 3.0000E-01 
l 

25 2 
2.0000E-04 1.0000E-05 1.0000E-05 
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Table 2. Identification of constitutive parameters in the inhomogeneous case. 
Constitutive 
parameters 

Initial 
guesses 

Numerical 
results 

Actual 
values 

Number of 
sample points 

Number of 
iterations 

1E  1.0000E+07 1.0000E+05 1.0000E+05 

1v  4.0000E-01 3.0000E-01 3.0000E-01 

1l  4.0000E-04 1.0000E-04 1.0000E-04 

2E  1.0000E+08 1.0000E+06 1.0000E+06 

2v  5.0000E-01 3.9998E-01 4.0000E-01 

2l  2.0000E-04 2.9998E-04 3.0000E-04 

25 17 

 
Table 3. The effects of initial guesses on the results (Maximum number of iterations is 17). 

1 2 3 
Constitutive 
parameters 

Initial 
guesses 

Final 
values 

Initial 
guesses 

Final 
values 

Initial 
guesses 

Final 
values 

Actual 
values 

1E  1.000E+04 1.000E+05 1.000E+06 1.000E+05 1.000E+07 1.000E+05 1.000E+05 

1v  4.000E-01 3.000E-01 4.000E-01 3.000E-01 4.000E-01 3.000E-01 3.000E-01 

1l  7.000E-02 9.980E-03 7.000E-02 9.980E-03 7.000E-02 9.980E-03 1.000E-02 

2E  1.000E+05 1.000E+06 1.000E+07 1.000E+06 1.000E+08 1.000E+06 1.000E+06 

2v  5.000E-01 3.999E-01 5.000E-01 3.999E-01 5.000E-01 3.999E-01 4.000E-01 

2l  2.000E-02 2.999E-02 2.000E-02 2.999E-02 2.000E-01 2.999E-02 3.000E-02 

 
Table 4. The effect of noisy data on the results 

δ =0.01 δ =0.03 
Constitutive 
parameters 

Expected 
values 

Confidence 
intervals 

Expected 
values 

Confidence 
intervals 

Actual 
values 

9.91582E+04 9.26880E+04 
1E  1.00000E+05 

1.00842E+05 
9.51120E+04 

9.75560E+04 
1.00E+05 

2.99089E-01 2.92031E-01 
1v  3.00000E-01 

3.00912E-01 
2.94688E-01 

2.97344E-01 
3.00E-01 

9.96487E-03 1.00351E-02 
1l  9.98269E-03 

1.00005E-03 
1.00875E-02 

1.01399E-02 
1.00E-02 

9.91845E+05 9.48872E+05 
2E  1.00000E+06 

1.00816E+06 
9.62582E+05 

9.76291E+05 
1.00E+06 

3.98761E-01 3.89145E-01 
2v  4.00002E-01 

4.01242E-01 
3.92764E-01 

3.96383E-01 
4.00E-01 

3.28039E-02 3.32891E-02 
2l  3.29257E-02 

3.30476E-02 
3.36524E-02 

3.40158E-02 
3.00E-02 
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On the basis of the above numerical tests, some remarks can be given as follows: 
(i) The proposed approach is capable of solving inverse couple-stress problems with unknown constitutive 

parameters including characteristic length. 
(ii) For most cases, solutions can be achieved within a few iterations.  
(iii) The choice of initial guess shows a slight effect on the final results, however the number of iterations will be 

affected. 
(iv) iii The results of identification seem relatively sensitive to noisy data.  
(v) Similar remarks to those given in [19] can be made for the choices of ,  and α , and their effects on the 

solutions. 
p c

 
7. CONCLUSIONS  
The major contribution of this paper is to present a general numerical model solving inverse couple stress 
problems with unknown constitutive coefficients. Since there seems no report directly related to this issue, the 
present work may be considered as an imperfect start, and considerable further effort is definitely required. The 
present work is also a new application of the aggregate function method that is numerically proved to be capable 
of solving inverse couple stress problems with noisy data. A numerical model, facilitated by the sensitivity 
analysis of displacement with respect to constitutive parameters, is established to solve direct couple stress 
problems by utilizing a newly developed discrete Cosserat finite element method. In order to avoid possible 
numerical oscillation, lower convergence rate, and divergence in the iterative process of solving inverse 
problems, constraints of lower bounds for constitutive parameters are taken into account, and are converted into 
a single smooth constraint by virtue of an aggregate function method with a consideration of computing 
convenience. The BFGS algorithm is combined with a technique of multiplier penalty functions in the solving 
process, and satisfactory numerical verification with noisy data is given.  
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